
Andrew Helbig
(530) 616-1752

ajhelbig@ucdavis.edu

Objective
Towork on interesting problemswith a team of driven individuals.

Education
Bachelors of Science, Computer Science Expected Graduation June 2024

University of California, Davis

Current GPA: 3.5/4.0

Skills
Intermediate C/C++ programming

Basic Bash/Shell Scripting

Basic CMake/make

Basic GIt

Basic Python programming

Most experience with Ubuntu Linux

Some experience working onMac andWindows

Interests
Operating systems, computer architecture, parallel computing, parallel algorithms, scalable high

performance software, graphics, game development, embedded systems.

Relevant Classes

ECS 36C Data Structures, Algorithms, & Programming

● Fell in love with efficient algorithms

● Implemented Ford-Fulkersonmin/max flow algorithm and applied it to a scheduling

problem using bipartite matching

● Grade Received: A

ECS 50 Computer Organization &Machine-Dependent Programming

● Fell in love with low level systems programming

● Wrote a tic tac toe game on Professor Nita's baremetal RISC-V game console simulator

● Grade Received: A+



ECS 154A Computer Architecture

● Created a single cycle 16 bit cpu in Logisim

● Wrote a simple compiler for the single cycle cpu assembly instructions

● Grade Received: A

ECS 154B Computer Architecture

● Built and simulated a 5 stage RISK-V CPU using Chisel

● Simulated 6 different array sum algorithm configurations using nativemulti threading and

GEM5

● Grade Received: A

ECS 150 Operating Systems & Systems Programming

● Wrote a user-level threads library with preemption and round robin scheduler

● Wrote a simple file system using a file allocation table similar toMSFAT

● Grade Received: A

Relevant Current and Future Classes

● ECS 158 Parallel Architecture - Spring 2023 Registered

● ECS 201C Parallel Architecture - Spring 2023 Registered

● ECS 120 Theory of Computation - Spring 2023 Registered

Projects

Graph Box

Just a summer passion project to learn how to use cmake and an external graphics api called

raylib using C++. The first goal of the project was to create a simple graph sandbox that

allows for the quick and easy generation of graphs that can then be used for studying graph

algorithms. I got as far as implementing a complete graph generator, grid graph generator,

naiveMST, andmaze generation algorithms. The secondary goal of the project was to write

clean code and structuremy git repo to be as easy as possible to clone and start tinkering

with. I feel I succeeded in this second goal, as all that is needed to get the program running

after being cloned is the execution of the run script.

Graph Box repo: https://github.com/ajhelbig/graph_box.git


